Question 1
Solve the following exponential equation by expressing each side as a power of the same base and then equating exponents.
31-x = 1/27
A. {2}
B. {-7}
C. {4}
D. {3}
Question 2
Write the following equation in its equivalent exponential form.
5 = logb 32
A. b5 = 32
B. y5 = 32
C. Blog5 = 32
D. Logb = 32
Question 3
Use properties of logarithms to expand the following logarithmic expression as much as possible.
Logb (√xy3 / z3)
A. 1/2 logb x - 6 logb y + 3 logb z
B. 1/2 logb x - 9 logb y - 3 logb z
C. 1/2 logb x + 3 logb y + 6 logb z
D. 1/2 logb x + 3 logb y - 3 logb z
Question 4
Solve the following exponential equation. Express the solution set in terms of natural logarithms or common logarithms to a decimal approximation, of two decimal places, for the solution.
32x + 3x - 2 = 0
A. {1}
B. {-2}
C. {5}
D. {0}
Question 5
Write the following equation in its equivalent logarithmic form.
3√8 = 2
A. Log2 3 = 1/8
B. Log8 2 = 1/3
C. Log2 8 = 1/2
D. Log3 2 = 1/8
Question 6
Solve the following exponential equation. Express the solution set in terms of natural logarithms or common logarithms to a decimal approximation, of two decimal places, for the solution.
ex = 5.7
A. {ln 5.7}; ≈1.74
B. {ln 8.7}; ≈3.74
C. {ln 6.9}; ≈2.49
D. {ln 8.9}; ≈3.97
Question 7
Write the following equation in its equivalent exponential form.
log6 216 = y
A. 6y = 216
B. 6x = 216
C. 6logy = 224
D. 6xy = 232
Question 8
Use properties of logarithms to expand the following logarithmic expression as much as possible.
logb (x2y)
A. 2 logy x + logx y
B. 2 logb x + logb y
C. logx - logb y
D. logb x – logx y
Question 9
An artifact originally had 16 grams of carbon-14 present. The decay model A = 16e -0.000121t describes the amount of carbon-14 present after t years. How many grams of carbon-14 will be present in 5715 years?
A. Approximately 7 grams
B. Approximately 8 grams
C. Approximately 23 grams
D. Approximately 4 grams
Question 10
Solve the following logarithmic equation. Be sure to reject any value of x that is not in the domain of the original logarithmic expressions. Give the exact answer. Then, where necessary, use a calculator to obtain a decimal approximation, to two decimal places, for the solution.
2 log x = log 25
A. {12}
B. {5}
C. {-3}
D. {25}
Question 11
Evaluate the following expression without using a calculator.
Log7 √7
A. 1/4
B. 3/5
C. 1/2
D. 2/7
Question 12
Write the following equation in its equivalent logarithmic form.
2-4 = 1/16
A. Log4 1/16 = 64
B. Log2 1/24 = -4
C. Log2 1/16 = -4
D. Log4 1/16 = 54
Question 13
Use properties of logarithms to condense the following logarithmic expression. Write the expression as a single logarithm whose coefficient is 1.
log2 96 – log2 3
A. 5
B. 7
C. 12
D. 4
Question 14
The half-life of the radioactive element krypton-91 is 10 seconds. If 16 grams of krypton-91 are initially present, how many grams are present after 10 seconds? 20 seconds?
A. 10 grams after 10 seconds; 6 grams after 20 seconds
B. 12 grams after 10 seconds; 7 grams after 20 seconds
C. 4 grams after 10 seconds; 1 gram after 20 seconds
D. 8 grams after 10 seconds; 4 grams after 20 seconds
Question 15
Use properties of logarithms to condense the following logarithmic expression. Write the expression as a single logarithm whose coefficient is 1.
log x + 3 log y
A. log (xy)
B. log (xy3)
C. log (xy2)
D. logy (xy)3
Question 16
Write the following equation in its equivalent exponential form.
4 = log2 16
A. 2 log4 = 16
B. 22 = 4
C. 44 = 256
D. 24 = 16
Question 17
Approximate the following using a calculator; round your answer to three decimal places.
3√5
A. .765
B. 14297
C. 11.494
D. 11.665
Question 18
Approximate the following using a calculator; round your answer to three decimal places.
e-0.95
A. .483
B. 1.287
C. .597
D. .387
Question 19
The exponential function f with base b is defined by f(x) = __________, b > 0 and b ≠ 1. Using interval notation, the domain of this function is __________ and the range is __________.
A. bx; (∞, -∞); (1, ∞)
B. bx; (-∞, -∞); (2, ∞)
C. bx; (-∞, ∞); (0, ∞)
D. bx; (-∞, -∞); (-1, ∞)
Question 20
Find the domain of following logarithmic function.
f(x) = log5 (x + 4)
A. (-4, ∞)
B. (-5, -∞)
C. (7, -∞)
D. (-9, ∞)
Solve the following exponential equation by expressing each side as a power of the same base and then equating exponents.
31-x = 1/27
A. {2}
B. {-7}
C. {4}
D. {3}
Question 2
Write the following equation in its equivalent exponential form.
5 = logb 32
A. b5 = 32
B. y5 = 32
C. Blog5 = 32
D. Logb = 32
Question 3
Use properties of logarithms to expand the following logarithmic expression as much as possible.
Logb (√xy3 / z3)
A. 1/2 logb x - 6 logb y + 3 logb z
B. 1/2 logb x - 9 logb y - 3 logb z
C. 1/2 logb x + 3 logb y + 6 logb z
D. 1/2 logb x + 3 logb y - 3 logb z
Question 4
Solve the following exponential equation. Express the solution set in terms of natural logarithms or common logarithms to a decimal approximation, of two decimal places, for the solution.
32x + 3x - 2 = 0
A. {1}
B. {-2}
C. {5}
D. {0}
Question 5
Write the following equation in its equivalent logarithmic form.
3√8 = 2
A. Log2 3 = 1/8
B. Log8 2 = 1/3
C. Log2 8 = 1/2
D. Log3 2 = 1/8
Question 6
Solve the following exponential equation. Express the solution set in terms of natural logarithms or common logarithms to a decimal approximation, of two decimal places, for the solution.
ex = 5.7
A. {ln 5.7}; ≈1.74
B. {ln 8.7}; ≈3.74
C. {ln 6.9}; ≈2.49
D. {ln 8.9}; ≈3.97
Question 7
Write the following equation in its equivalent exponential form.
log6 216 = y
A. 6y = 216
B. 6x = 216
C. 6logy = 224
D. 6xy = 232
Question 8
Use properties of logarithms to expand the following logarithmic expression as much as possible.
logb (x2y)
A. 2 logy x + logx y
B. 2 logb x + logb y
C. logx - logb y
D. logb x – logx y
Question 9
An artifact originally had 16 grams of carbon-14 present. The decay model A = 16e -0.000121t describes the amount of carbon-14 present after t years. How many grams of carbon-14 will be present in 5715 years?
A. Approximately 7 grams
B. Approximately 8 grams
C. Approximately 23 grams
D. Approximately 4 grams
Question 10
Solve the following logarithmic equation. Be sure to reject any value of x that is not in the domain of the original logarithmic expressions. Give the exact answer. Then, where necessary, use a calculator to obtain a decimal approximation, to two decimal places, for the solution.
2 log x = log 25
A. {12}
B. {5}
C. {-3}
D. {25}
Question 11
Evaluate the following expression without using a calculator.
Log7 √7
A. 1/4
B. 3/5
C. 1/2
D. 2/7
Question 12
Write the following equation in its equivalent logarithmic form.
2-4 = 1/16
A. Log4 1/16 = 64
B. Log2 1/24 = -4
C. Log2 1/16 = -4
D. Log4 1/16 = 54
Question 13
Use properties of logarithms to condense the following logarithmic expression. Write the expression as a single logarithm whose coefficient is 1.
log2 96 – log2 3
A. 5
B. 7
C. 12
D. 4
Question 14
The half-life of the radioactive element krypton-91 is 10 seconds. If 16 grams of krypton-91 are initially present, how many grams are present after 10 seconds? 20 seconds?
A. 10 grams after 10 seconds; 6 grams after 20 seconds
B. 12 grams after 10 seconds; 7 grams after 20 seconds
C. 4 grams after 10 seconds; 1 gram after 20 seconds
D. 8 grams after 10 seconds; 4 grams after 20 seconds
Question 15
Use properties of logarithms to condense the following logarithmic expression. Write the expression as a single logarithm whose coefficient is 1.
log x + 3 log y
A. log (xy)
B. log (xy3)
C. log (xy2)
D. logy (xy)3
Question 16
Write the following equation in its equivalent exponential form.
4 = log2 16
A. 2 log4 = 16
B. 22 = 4
C. 44 = 256
D. 24 = 16
Question 17
Approximate the following using a calculator; round your answer to three decimal places.
3√5
A. .765
B. 14297
C. 11.494
D. 11.665
Question 18
Approximate the following using a calculator; round your answer to three decimal places.
e-0.95
A. .483
B. 1.287
C. .597
D. .387
Question 19
The exponential function f with base b is defined by f(x) = __________, b > 0 and b ≠ 1. Using interval notation, the domain of this function is __________ and the range is __________.
A. bx; (∞, -∞); (1, ∞)
B. bx; (-∞, -∞); (2, ∞)
C. bx; (-∞, ∞); (0, ∞)
D. bx; (-∞, -∞); (-1, ∞)
Question 20
Find the domain of following logarithmic function.
f(x) = log5 (x + 4)
A. (-4, ∞)
B. (-5, -∞)
C. (7, -∞)
D. (-9, ∞)