A+ Answers



Question 21   

Find the solution set for each system by finding points of intersection.

            x2 + y2 = 1

x2 + 9y = 9


A. {(0, -2), (0, 4)}     

B. {(0, -2), (0, 1)}     

C. {(0, -3), (0, 1)}     

D. {(0, -1), (0, 1)}     

There is no correct alternative. (0, 1) is the only intersection point.

Question 22   

Find the standard form of the equation of the following ellipse satisfying the given conditions.

Foci: (-5, 0), (5, 0)

Vertices: (-8, 0), (8, 0)




A. x2/49 + y2/ 25 = 1  

B. x2/64 + y2/39 = 1   

C. x2/56 + y2/29 = 1   

D. x2/36 + y2/27 = 1   

Question 23   

Find the standard form of the equation of each hyperbola satisfying the given conditions.

Center: (4, -2)

Focus: (7, -2)

Vertex: (6, -2)




A. (x - 4)2/4 - (y + 2)2/5 = 1  

B. (x - 4)2/7 - (y + 2)2/6 = 1  

C. (x - 4)2/2 - (y + 2)2/6 = 1  

D. (x - 4)2/3 - (y + 2)2/4 = 1  

Question 24   

Find the vertex, focus, and directrix of each parabola with the given equation.

(y + 1)2 = -8x




A. Vertex: (0, -1); focus: (-2, -1); directrix: x = 2   

B. Vertex: (0, -1); focus: (-3, -1); directrix: x = 3    

C. Vertex: (0, -1); focus: (2, -1); directrix: x = 1     

D. Vertex: (0, -3); focus: (-2, -1); directrix: x = 5   

Question 25   

Convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola.

x2 - 2x - 4y + 9 = 0




A. (x - 4)2 = 4(y - 2); vertex: (1, 4); focus: (1, 3) ; directrix: y = 1 

B. (x - 2)2 = 4(y - 3); vertex: (1, 2); focus: (1, 3) ; directrix: y = 3 

C. (x - 1)2 = 4(y - 2); vertex: (1, 2); focus: (1, 3) ; directrix: y = 1 

D. (x - 1)2 = 2(y - 2); vertex: (1, 3); focus: (1, 2) ; directrix: y = 5 

Question 26   

Find the standard form of the equation of each hyperbola satisfying the given conditions.

Endpoints of transverse axis: (0, -6), (0, 6)

Asymptote: y = 2x




A. y2/6 - x2/9 = 1       

B. y2/36 - x2/9 = 1      

C. y2/37 - x2/27 = 1    

D. y2/9 - x2/6 = 1       

Question 27   

Convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola.

y2 - 2y + 12x - 35 = 0




A. (y - 2)2 = -10(x - 3); vertex: (3, 1); focus: (0, 1); directrix: x = 9           

B. (y - 1)2 = -12(x - 3); vertex: (3, 1); focus: (0, 1); directrix: x = 6           

C. (y - 5)2 = -14(x - 3); vertex: (2, 1); focus: (0, 1); directrix: x = 6           

D. (y - 2)2 = -12(x - 3); vertex: (3, 1); focus: (0, 1); directrix: x = 8           

Question 28   

Find the standard form of the equation of each hyperbola satisfying the given conditions.

Foci: (0, -3), (0, 3)

Vertices: (0, -1), (0, 1)




A. y2 - x2/4 = 0           

B. y2 - x2/8 = 1           

C. y2 - x2/3 = 1           

D. y2 - x2/2 = 0           

Question 29   

 Locate the foci of the ellipse of the following equation.



7x2 = 35 - 5y2




A. Foci at (0, -√2) and (0, √2)           

B. Foci at (0, -√1) and (0, √1)           

C. Foci at (0, -√7) and (0, √7)           

D. Foci at (0, -√5) and (0, √5)           

Question 30   

Locate the foci of the ellipse of the following equation.

25x2 + 4y2 = 100




A. Foci at (1, -√11) and (1, √11)       

B. Foci at (0, -√25) and (0, √25)       

C. Foci at (0, -√22) and (0, √22)       

D. Foci at (0, -√21) and (0, √21)       

Question 31   

Locate the foci and find the equations of the asymptotes.



x2/9 - y2/25 = 1




A. Foci: ({±√36, 0) ;asymptotes: y = ±5/3x 

B. Foci: ({±√38, 0) ;asymptotes: y = ±5/3x 

C. Foci: ({±√34, 0) ;asymptotes: y = ±5/3x 

D. Foci: ({±√54, 0) ;asymptotes: y = ±6/3x 

Question 32   

Locate the foci and find the equations of the asymptotes.



4y2 – x2 = 1




A. (0, ±√4/2); asymptotes: y = ±1/3x

B. (0, ±√5/2); asymptotes: y = ±1/2x

C. (0, ±√5/4); asymptotes: y = ±1/3x

D. (0, ±√5/3); asymptotes: y = ±1/2x

Question 33   

Find the vertices and locate the foci of each hyperbola with the given equation.

y2/4 - x2/1 = 1




A. Vertices at (0, 5) and (0, -5); foci at (0, 14) and (0, -14)

B. Vertices at (0, 6) and (0, -6); foci at (0, 13) and (0, -13) 

C.

Vertices at (0, 2) and (0, -2); foci at (0, √5) and (0, -√5)     

D. Vertices at (0, 1) and (0, -1); foci at (0, 12) and (0, -12)





Question 34   

Find the vertex, focus, and directrix of each parabola with the given equation.

(y + 3)2 = 12(x + 1)




A. Vertex: (-1, -3); focus: (1, -3); directrix: x = -3  

B. Vertex: (-1, -1); focus: (4, -3); directrix: x = -5  

C. Vertex: (-2, -3); focus: (2, -4); directrix: x = -7  

D. Vertex: (-1, -3); focus: (2, -3); directrix: x=-4

Question 35   

Convert each equation to standard form by completing the square on x and y.

9x2 + 25y2 - 36x + 50y - 164 = 0




A. (x - 2)2/25 + (y + 1)2/9 = 1

B. (x - 2)2/24 + (y + 1)2/36 = 1          

C. (x - 2)2/35 + (y + 1)2/25 = 1          

D. (x - 2)2/22 + (y + 1)2/50 = 1         

Question 36   

Convert each equation to standard form by completing the square on x and y.

4x2 + y2 + 16x - 6y - 39 = 0




A. (x + 2)2/4 + (y - 3)2/39 = 1

B. (x + 2)2/39 + (y - 4)2/64 = 1          

C. (x + 2)2/16 + (y - 3)2/64 = 1          

D. (x + 2)2/6 + (y - 3)2/4 = 1 



Question 37   

Find the focus and directrix of the parabola with the given equation.

8x2 + 4y = 0




A. Focus: (0, -1/4); directrix: y = 1/4           

B. Focus: (0, -1/6); directrix: y = 1/6

C. Focus: (0, -1/8); directrix: y = 1/8

D. Focus: (0, -1/2); directrix: y = 1/2           

Question 38   

Find the vertex, focus, and directrix of each parabola with the given equation.

(x + 1)2 = -8(y + 1)




A. Vertex: (-1, -2); focus: (-1, -2); directrix: y = 1  

B. Vertex: (-1, -1); focus: (-1, -3); directrix: y = 1  

C. Vertex: (-3, -1); focus: (-2, -3); directrix: y = 1  

D. Vertex: (-4, -1); focus: (-2, -3); directrix: y = 1  

Question 39   

Find the standard form of the equation of the following ellipse satisfying the given conditions.

Foci: (-2, 0), (2, 0)

Y-intercepts: -3 and 3




A. x2/23 + y2/6 = 1     

B. x2/24 + y2/2 = 1     

C. x2/13 + y2/9 = 1     

D. x2/28 + y2/19 = 1   

Question 40   

Find the focus and directrix of each parabola with the given equation.

x2 = -4y





A. Focus: (0, -1), directrix: y = 1      

B. Focus: (0, -2), directrix: y = 1      

C. Focus: (0, -4), directrix: y = 1      

D. Focus: (0, -1), directrix: y = 2